기업의 더 효율적인 소프트웨어
선택을 위한 17년 지원 경험

Databricks

Databricks

Databricks은(는) 무엇인가요?

빅 데이터 처리 및 시각화를 더 간편하게 수행할 수 있도록 지원하는 데이터 과학 팀을 위한 클라우드 기반 분석 플랫폼입니다.

Databricks은(는) 누가 사용하나요?

AI 및 기계 학습을 통해 데이터 과학, 엔지니어링 및 비즈니스 워크플로를 단일 플랫폼으로 통합하여 기업이 실행 가능한 통찰력을 이끌어낼 수 있도록 지원하는 클라우드 기반 데이터 분석 플랫폼입니다.

Databricks에 대해 확실하지 않으세요? 인기 있는 대안 제품과 비교

Databricks

Databricks

4.5 (22)
US$99.00
무료 버전
무료 체험판
2
발견된 통합 없음
4.7 (22)
4.2 (22)
4.4 (22)
시작 가격
가격 옵션
특징
통합
사용 편의성
비용 대비 가치
고객 서비스 소프트웨어
발견된 가격 없음
무료 버전
무료 체험판
48
3
4.2 (8,093)
4.7 (8,093)
4.2 (8,093)
녹색 등급 막대는 평균 등급과 리뷰 수에 따라 결정되는 최우수 제품을 보여줍니다.

Databricks의 다른 적합한 대안

Google Analytics 360
최상위 등급 기능
데이터 시각화
보고/분석
성능 메트릭
Procore
최상위 등급 기능
다중 프로젝트
문서 관리
프로젝트 추적
Google Cloud
최상위 등급 기능
데이터 스토리지 관리
백업 및 복구
보안 데이터 스토리지
Sisense
최상위 등급 기능
KPI 모니터링
데이터 시각화
보고/분석
Minitab
최상위 등급 기능
데이터 시각화
보고 및 통계
보고/분석
Looker
최상위 등급 기능
다중 데이터 소스
데이터 시각화
보고/분석
Datadog
최상위 등급 기능
경보/통지
데이터 시각화
실시간 모니터링
Mode
최상위 등급 기능
데이터 시각화
데이터 커넥터
보고/분석

Databricks 리뷰

평균 점수

종합
4.5
사용 편의성
4.7
고객 서비스 소프트웨어
4.4
특징
4.6
비용 대비 가치
4.2

회사 규모(직원 수)별 리뷰

  • <50
  • 51-200
  • 201-1,000
  • >1,001

점수별 리뷰 찾기

5
64%
4
27%
3
9%
Filippo
Filippo
이탈리아의 Senior Data Scientist
검증된 LinkedIn 사용자
마케팅 및 광고, 51~200 직원
소프트웨어 사용 목적: 1년 이상
리뷰어 출처

A fantastic all-in-one-place platform for big data analytics

5.0 작년

주석: We are moving all our big data computation on the Databricks platform. One of the main advantages is the possibility to plan notebooks execution through the workflow section.

장점:

Databricks can be integrated with the most used cloud services (Amazon, Google, Microsoft) and you can create and manages computation clusters, write code and see results in a single platform instead of having multiple separate services. Its dashboard is really easy to use and allows you to focus on code development. It also supports notebooks versioning with GitLab.

단점:

The data visualization part could really be improved.

검증된 리뷰어
검증된 LinkedIn 사용자
정보 기술 및 서비스, 10,000+ 직원
소프트웨어 사용 목적: 2년 이상
리뷰어 출처

Databricks: Unleashing Data/AI Potential for Next-Level Analytics and Collaboration

4.0 작년

주석: Very good , able to created end-end lakehouse platform for leading healthcare client

장점:

unified lakehouse architecture platform with good collaborationmanaged infrastructure with autoscaling & serverless functionalityautoloader, schema evolution & delta live tablesunit catalog & delta sharing for unified governanceMLflow & integrations with partner connectVersion control databricks repos, secret with security & complianceReal time processing

단점:

Cost & capacity planning for clusters if you don't use DLT/serverless pipelinesPerformance variabilitySome vendor lock-in if you use "DELTA" format with delta live table

검증된 리뷰어
검증된 LinkedIn 사용자
은행, 1,001~5,000 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Very good to handle very big data

3.0 4년 전

주석: While it supports python, when I need to use it, I ultimately prefer to sample or aggregate and export data to work in another environment. For this end, it works very well.

장점:

- Enables simultaneous collaborative work with colleagues - Easy to mix spark queries and python for extra analyses and plots - Handful visualization modes for query results (tables and plots with aggregations)

단점:

- Hard to manage notebook workspace - Sometimes it gets really slow to run queries - AFAIK, there aren't visualization options for datasets (without running queries)

검증된 리뷰어
검증된 LinkedIn 사용자
정보 기술 및 서비스, 1,001~5,000 직원
소프트웨어 사용 목적: 1년 이상
리뷰어 출처

Best Big Data Analysis Platform

5.0 2년 전

장점:

Databricks is a great platform for working with a huge amount of data. But the most interesting feature is the ability to use Magic query. Magic query allows users to write code in multiple languages in the same notebook.

단점:

Databricks is a go-to platform for most of the analysis and processing workload, but when it comes to the financials, it becomes a little more expensive. And as a result, not a lot of the projects are reliable to be developed in Databricks.

Rayla
Rayla
미국의 Graduate Research Assistant
검증된 LinkedIn 사용자
고등 교육, 51~200 직원
소프트웨어 사용 목적: 1년 이상
리뷰어 출처

Powerful tool for dev ops of machine learning models

5.0 5년 전

주석: Overall, my experience with Databricks has been very positive. It is a powerful tool to enable data scientists without a lot of data engineering skills. However, you need to be a data scientist or machine learning engineer to be able to take advantage of its power for machine learning.

장점:

I love how easy it is to deploy auto-scaling machine learning models. After a machine learning model is trained, you can just click a button to deploy the model, I believe in a container, and have it auto scale as needed. You can also specify the minimum and maximum size of the deployment to reduce costs but to keep up with the workload as necessary. It is also built around Spark, so tasks involving "big data" aren't an issue.

단점:

Some of the cons are that the primary language is Java/Scala, whereas many data scientists are using python or R, which run slower on Databricks than Java and Scala. Also, the main interface via coding, which can limit a lot of citizen data scientists.

검증된 리뷰어
검증된 LinkedIn 사용자
원격 통신, 5,001~10,000 직원
소프트웨어 사용 목적: 2년 이상
리뷰어 출처

Retrieve SQL query data faster using Databricks.

4.0 2년 전

주석: Databricks to build datalake with ease !

장점:

Easy to use application to build data lakes to run reports on top of it. The Databricks internal architecture helps to run the reports faster.

단점:

The data bricks features are completely wrapper and delivered as snowflake (product) . The Databricks should come up with more features to stand out in the market.

검증된 리뷰어
검증된 LinkedIn 사용자
금융 서비스, 1,001~5,000 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

An unified platform to develop high quality analysis

5.0 5년 전

주석: Databricks is allowing data analysis that other systems could not perform at the same performance because it is a platform that integrates huge amounts of cloud data with Scala, Python, SQL or R notebooks in a user-friendly interface. Due to the features of Databricks, daily work seems more efficient and less bureaucratic.

장점:

What I like most about Databricks is the amount of integrations the platform provides to the user. With Databricks, you can create datasets, develop machine learning models, and analyze performance automatically by setting up a job periodically. Whether the user is an engineer, data scientist, or business analyst, Databricks can streamline everyone's work.

단점:

What I least like about Databricks is the instability that usually occurs when there are too many users trying to run their notebooks on the same cluster at the same time.

Cody
미국의 Controller
온라인 미디어, 51~200 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Modern Analytics with High Flexibility

4.0 3년 전

주석: Positive - after implementing at our company, significant data automation has reduce the amount of time it takes to get in the proper format in the correct people's hands. No more late information that has negative consequences,

장점:

Databricks was able to pull data from our core and create specialized dashboarding / reporting that automated a host of manual process that took hours per week. It is now totally hands off and management get review the data in just a few clicks.

단점:

It can be extremely confusing given the sheer breadth of tools available. The initial setup and connections certainly require an experienced professional, but once up and running, less-technical users can utilize.

검증된 리뷰어
검증된 LinkedIn 사용자
정보 기술 및 서비스, 501~1,000 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Best solution for Enterprise analytics

5.0 4년 전

주석: I've got used to Databricks and writing PySpark codes very easily, people who are not very fluent in coding still can get valuable insights from the data using notebooks developed by data scientists. The ability of databricks to transform data and do whatever you want is powerful.

장점:

The infrastructure is very simple, I have started using Community edition, and then switched to the paid version, however community edition covers most of your needs if you are a student or doing one time projects.

단점:

There are no many users of Pyspark, sometimes finding some answers is hard /there are no many forums, resources, no many questions in Stack overflow/

검증된 리뷰어
검증된 LinkedIn 사용자
경영 컨설팅, 10,000+ 직원
소프트웨어 사용 목적: 1년 이상
리뷰어 출처

Databricks Review

5.0 5년 전

주석: Very good. It made analyzing big data a lot easier

장점:

This product has democratized big data computation. Its very easy to move from any platform to this product as it supports most of the languages.

단점:

Nothing so far- may be cost of computation can improve over time but still an economical product to build in-house big data capability.

Larissa
브라질의 Analista de Chargeback
은행, 1,001~5,000 직원
소프트웨어 사용 목적: 1년 이상
리뷰어 출처

Prático e intuitivo

4.0 5개월 전

장점:

A construção de querys e dashboards são elaboradas de forma prática e intuitiva, ferramenta indispensável para o controle e análise de dados para uma empresa de médio e grande porte.

단점:

Esporadicamente a ferramenta trava, porém não tive muitos problemas em relação a isso recentemente.

Mallikarjuna
미국의 Lead consultant
정보 기술 및 서비스, 10,000+ 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Review on databricks

5.0 4년 전

주석: I would strongly recommend this software for others to use their project needs

장점:

I’m one of active user using this software day to day needs its pioneer data store layer by holding transactional process stream line it and hold the information by applying business rules .

단점:

It’s pioneer to to hold the source raw traditions as a refined layer to store the data for longer time

Douglas
브라질의 Senior business analyst
금융 서비스, 1,001~5,000 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Excellent for data analysis

5.0 6년 전

주석: Excellent. Very fast and easy to use. Also it is easy to get help in the documentation. No lags, and support a big number of users.

장점:

The access and manipulation of data. The software is very fast and great to manipulate and treat data. Also it is possible to build models.

단점:

The lack of options of visualization and creation of dashboards. The creation of dashboards is possible, but is not intuitive.

Vipul
인도의 Principal Analyst
정보 기술 및 서비스, 1,001~5,000 직원
소프트웨어 사용 목적: 1년 이상
리뷰어 출처

Great platform for sharing repository

5.0 3년 전

장점:

Our team can collaborate on a project simultaneously and make changes to the scripts. It is fast and reliable.

단점:

Sometimes we need to restart the cluster when system gets crashed.

Shamaas
미국의 Software Engineer
마케팅 및 광고, 2~10 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Powerful tool for data analysis

5.0 2년 전

주석: Overall databricks is very good, and if optimized correctly, can let you work with big scale datasets.

장점:

I love the z indexing, which allows for really fast querying of data. Optimized by spark it is great.

단점:

The data visualization are subpar. I wish there were better libraries to integrate and visual the data.

Robert
미국의 DB Architect
건설, 5,001~10,000 직원
소프트웨어 사용 목적: 1~5개월
리뷰어 출처

Great tool for the toolbox

4.0 5년 전

장점:

I'm a SQL person, so being able to run big data analytics in my preferred language was quite nice. Being able to (near) seamlessly swap between Scala, SQL, and python in the same script is quite powerful. If you don't know how to do something easily in one language, do it in another and then swap back. It's pretty performant and querying non-indexed data dumped from the source systems, even if those datasets aren;t quite "big data". I found it to be quicker to dump 100mil rows of staged date from our on-prem server to the data lake and crunch it in Databricks than it was to run in SQL.

단점:

I wasn't involved in the pricing piece, but from what I understand it's fairly expensive. The clusters can be spun up or down as needed, and there's a nice inactivity shutdown feature if you forget to turn off a test cluster, or something. I also had a pretty rough time getting an Azure Gen 2 Data Lake connected, but after finding the not-so-well-documented bug, it wasn't a big deal.

검증된 리뷰어
검증된 LinkedIn 사용자
정보 기술 및 서비스, 11~50 직원
소프트웨어 사용 목적: 1~5개월
리뷰어 출처

Great solution for your ETL workloads!

5.0 3년 전

주석: We are using Databricks for blockchain ETL workloads

장점:

- Documentation is GREAT - Implementation is mostly straight-forward - The service is easy to use and full of features - Support is top-notch - The interviews we had with the DB guys were more like a peers meeting than a corporate call (I love this) - Our DS lead engineer totally loves it

단점:

- Can't really speak of anything that we don't like about the product at the moment

Andrew
미국의 Senior Program Manager
정보 기술 및 서비스, 1,001~5,000 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Great tool to unlock potential from data science teams

5.0 4년 전

주석: Overall I find Databricks to be fantastic tool that I almost couldn't live without. Highly recommend it.

장점:

Databricks allows data science teams to do things that they normally would not be able to do without a much greater level of technical ability. Their mission is "making big data simple" and they definitely deliver on that promise.

단점:

One area where there's still potential to improve further is around making machine learning more accessible. Currently ML still requires a pretty significant degree of data engineering knowledge, but I would love to see Databricks make ML even more accessible.

Balashowry Preetam
Balashowry Preetam
미국의 data scientist
검증된 LinkedIn 사용자
정보 서비스, 10,000+ 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Good portal for data science related work

5.0 6년 전

장점:

I like the portal page, which connects all Azure subscriptions.

단점:

It can be difficult to understand, and not much tutorial is available.

Dan
영국의 SA
도박 및 카지노, 10,000+ 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Databricks Review

4.0 5년 전

주석: Databricks was chosen as part of a new cloud based data platform. Engagement from the company could be better, however the product itself does the job

장점:

Easy to use user interface Can be widely shared across an enterprise with various teams Apache Spark Cluster part of product

단점:

Information Security considerations have to be taken into account due to need for integrations with databricks VPCs when hosted in AWS

Iulian
독일의 PM
컴퓨터 소프트웨어, 5,001~10,000 직원
소프트웨어 사용 목적: 1~5개월
리뷰어 출처

All data in one place

5.0 2년 전

장점:

-Open source -Built upon excellent technologies -Broad set of data ingestion sources -Reliable and scalable -Cost efficient data processing

단점:

-Can get overwhelming when you start using it -Would be nice to be able visualize data on the fly

Rita
브라질의 ux designer
컴퓨터 소프트웨어, 51~200 직원
소프트웨어 사용 목적: 6~12개월
리뷰어 출처

Good python environment

3.0 4년 전

주석: Mainly, i use databricks to run large queries, otherwise, I export the data

장점:

In databricks is easy to transfer the result of a spark query to the python environment, and it has several plots with automatic aggregations

단점:

Databricks has a bad file management system and it is slow sometimes. In addition there are no ways to make a visual query, without using code.